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Abstract: The effect of fluid inertia is generally neglected in view of its negligible contribution compared to viscous 

force in the analysis of hydrodynamic journal bearings. The fluid inertia effect cannot be neglected when the 

viscous force are of the same order of magnitude and then the fluid inertia effect is to be taken in the analysis when 

the Modified Reynolds number is around one. Since no machining surfaces are perfectly smooth so the 

assumptions of smooth surfaces can no longer be employed to accurately predict the performance characteristics 

of journal bearing systems. This theoretical work analyses the combined influence of surface roughness and fluid-

inertia effects on performance characteristics of hydrodynamic journal bearing. The average Reynolds equation 

that modified to include the fluid inertia and surface roughness effect and is used with appropriate boundary 

conditions to obtain pressure profile in the fluid-film region. The solutions of modified average Reynolds equations 

are obtained using finite difference method and appropriate iterative schemes. The effects of surface roughness 

parameter, roughness orientation, and roughness characteristics of opposing surfaces including fluid-inertia 

effects simultaneously on circumferential fluid-film pressure distribution, load carrying capacity of the bearing are 

studied. The steady state bearing performance analysis is done through parametric study of the various variables 

like modified Reynolds number, eccentricity ratio, slenderness ratio, attitude angle, surface roughness parameter, 

surface pattern parameter. The variation of bearing load carrying capacity, attitude angle, end flow, friction 

parameters has been studied and plotted against various parameters.  

Keywords: Modified Reynolds number, slenderness ratio, attitude angle, sommerfeld number, eccentricity ratio, 

journal bearings, fluid inertia, roughness pattern and roughness parameter.  

I.   INTRODUCTION 

In the classical hydrodynamic theory the basic assumptions include negligible fluid inertia forces in comparison to the 

viscous forces. Due to high velocity it is possible to arrive at such a situation where flow is laminar but the fluid inertia 

effect cannot be neglected and the classical Reynolds equation is not valid in such case. Pinkus and Sterlincht [4], have 

shown that the fluid inertia effect cannot be neglected when the viscous and the inertia forces are of the same order of 

magnitude. In recent times synthetic lubricants, low viscosity lubricants, are used in industries. Because of high velocity it 

is possible to attain such a situation where flow is laminar but fluid inertia forces are significant.  

It has been pointed out that there is an intermediate regime in which the flow is still laminar but both viscous and inertia 

forces are significant. Consideration of fluid inertia effect may be one of the areas of recent extension of the classical 

lubrication theory. Among the few studies related to effect fluid inertia effect, Constatinescu and Galetuse [3] evaluated 

the momentum equations for laminar and turbulent flows in fluid film are evaluated by assuming that the shape of 
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velocity profiles is not strongly affected by the presence of inertia forces. Banerjee et. al [5] introduced an extended form 

of Reynolds equation to include the effect of fluid inertia, adopting an iteration scheme. Chen and Chen[14] obtained the 

steady-state characteristics of finite bearings including inertia effect using the formulation of Banerjee et al. [5]. Kakoty 

and Majumdar [7] used the method of averaged inertia in which inertia terms are integrated over the film thickness to 

account for the inertia effect in their studies. The above studies were mainly based on ideally smooth bearing surfaces.  

The classical theory of hydrodynamic lubrication given by Reynolds does not consider the surface roughness of the 

elements having relative motion. When the fluid-film thickness in a journal bearing system is of the order of few 

micrometres, the surface roughness topography has a profound effect on bearing performance. In the design of high speed 

rotary machinery, consideration of surface roughness is importance to predict the steady state characteristics analysis of 

the hydrodynamic journal bearing. Hydrodynamic lubrication theory of rough surfaces has been developed by several 

researchers since more than a decade ago. A thorough review of theories of hydrodynamic lubrication of rough surfaces 

was presented by Elrod [8]. There are basically two approaches for calculating hydrodynamic pressure distribution and 

load capacity of partially lubricated surfaces. Flow simulation method of a randomly generated rough surfaces with 

known statistical properties over the surface area was used by Patir and Cheng[1-2]. Tonder[11] studied the lubrication of 

rough surfaces by Monte Carlo method. Majumdar and Hamrock [10] have determined the hydrodynamic load capacity of 

finite oil journal bearing adopting Patir and Cheng model, but expressed average gap height in an analytical form. In 

Majumdar and Hamrock [10] the asperity contact load was also estimated following Greenwood and Tripp [12] theory. 

Flow factor method was critically looked into by Tripp[13] theory.  

In the present work, a modified average Reynolds equation and a solution algorithm are developed to include fluid inertia 

and surface roughness effects in the analysis of lubrication problems. The developed model is used to study the influence 

of fluid inertia and surface roughness effects on the steady state characteristics such as circumferential pressure, load 

carrying capacity, attitude angle and side leakage of a hydrodynamic oil journal bearing.  

II.    BASIC THEORY 

A. Considering fluid Inertia Effect only: 

The modified average Reynolds equation for fully lubricated surfaces is derived starting from the Navier-Stokes equations 

and the continuity equation with few assumptions. The non-dimensional form of the momentum equations and the 

continuity equation for a journal bearing may be written as (Figure. 1) 

 

Fig. 1 The schematic diagram of flexibly supported oil Journal Bearing 
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The variation in the density with time is considered to be negligible. Since there is no variation in pressure across fluid 

film the second momentum equation is not used.  

The fluid film thickness can be given as   
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After Constantinescu and Galetuse[3] the velocity components are approximated by the parabolic profiles. The velocity 

components may be expressed in non-dimensional form as follows: 
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Q and
zQ are dimensionless flow parameter in   and 

_

z direction respectively.  

Substituting these two into momentum equations and integrating give 
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Where, 
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Neglecting time depended terms one can obtain the following form of modified Reynolds equation for steady state 

condition considering fluid inertia effect.  
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and 
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and also,  
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The steady state fluid film thickness can be written as 

 cos1 00

_

h                (18) 

When journal and bearing surface is considered smooth 
0 is steady state eccentricity ratio and 

0p is the steady state oil 

film pressure.  

B. Considering surface roughness effect: 

It has been reported by many researcher that the surface roughness patterns significantly influence the steady state and 

dynamic characterises of hydrodynamic bearings. Consider two real surfaces with normal film gap h  in the sliding 

motion. Local film thickness Th is defined to be of the form  

21   hhT                 
(19) 

Where h  is the nominal film thickness (compliance) defined as the distance between mean levels of the two surfaces. 

1 and
2  are the random roughness amplitudes of the two surfaces measured from their mean levels.  

We assume 
1 and 

2  have a Gaussian distribution of heights with zero mean and standard deviations 
1  and 2  

respectively.  
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Fig. 2. Two rough surfaces in relative motion 
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The ratio of h  is an important parameter showing the effects of surface roughness.  

To study surfaces with directional properties the surface characteristic  can be used. The parameter   can be viewed as 

the length to width ratio of a representative asperity. There are mainly three sets of asperity patterns are identified purely 
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Where  f is the probability density function of composite roughness. Where 
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After integration we have  
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Differentiating 
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C.  Pressure Flow Factors: 

Patir and Cheng [1] and [2] introduced pressure flow factors x  and z  in circumferential and axial direction are 

obtained through numerical simulation. The pressure flow simulation factors are given by the empirical relation of the 

form: 

11    forCe rH

x          
(29) 

11    forCH r

x          
(30) 

Where 


h
H  . The constants C and r are given as a 

functions of   in Table. 1 

z is equal to 
x  value corresponding to the directional properties of the z profile. In functional form it is given as:  





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


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













1
,,

hh
xz

                

(31)  

TABLE 1. COEFFICIENTS OF EQUATIONS (29), (30) FOR x  

  C r Range 

1/9 1. 48 0. 42 H > 1 

1/6 1. 38 0. 42 H > 1 

1/3 1. 18 0. 42 H > 0. 75 

1 0. 90 0. 56 H > 0. 5 

3 0. 225 1. 5 H > 0. 5 

6 0. 520 1. 5 H > 0. 5 

9 0. 870 1. 5 H > 0. 5 
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D. Shear Flow Factors: 

Similar to the pressure flow factors, the shear flow factor is a function of the film thickness and roughness parameters 

only. However, unlike 
x which only depends on the statistics of the combined roughness , and the shear flow factors 

depends on the statistical parameter of 
21  and separately . Therefore, 

s  is a function of h , the standard 

deviations 
21  and and the surface pattern parameters 

1 and 
2 of the two opposing surfaces. Through numerical 

experimentation, 
s is found to depend on these parameters through the functional form: 

),(, 2211 






h

V
h

V srsrs 









         

(32) 

Where 
1rV and 

2rV  are the variance ratios given by:  

1

2

2

2'

2

1

1 1 rrr VVV 











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


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










         

(33) 

s is a positive function of h and the surface pattern parameter of the given surface.  

The shear flow factor s is plotted as a function of h and   in [1, 2]. starting with zero for purely longitudinal 

roughness   , the shear flow factor increases with decreasing  , and retains highest value for purely transverse 

roughness  0  . Through numerical simulation and using nonlinear least square program they are of the form: 

2
321

1

HH

s eHA
 

 5H
       

(34) 

Where


h
H  , 

For extrapolationbeyond 5H the following relation should be used: 

H

s eA 25.0

2

 5H           
(35) 

The coefficients 32121 ,,,, AA  are listed as functions of   in Table 2.   

TABLE 2: COEFFICIENTS OF EQUATIONS (32), (33) FOR s (RANGE 5.0H ) 

    A1     α1     α2    α3   A2 

1/9 2. 046 1. 12 0. 78 0. 03 1. 856 

1/6 1. 962 1. 08 0. 77 0. 03 1. 754 

1/3 1. 858 1. 01 0. 76 0. 03 1. 561 

1 1. 899 0. 98 0. 92 0. 05 1. 126 

3 1. 560 0. 85 1. 13 0. 08 0. 556 

6 1. 290 0. 62 1. 09 0. 08 0. 388 

9 1. 011 0. 54 1. 07 0. 08 0. 295 

Now introducing pressure flow factors zx and  with shear flow factors s we get modified Reynolds‟s equations 

considering combined effect of fluid inertia and surface roughness in dimensionless form under steady state condition as: 
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(36) 
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Or,  
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(37) 

Where, xI  and zI are same as equation (14) and (15) above,  

Boundary conditions for equation (37) are as follows  

1. The pressure at the ends of the bearing is assumed to be zero (ambient):   01,0 


p  

2. The pressure distribution is symmetrical about the mid-plane of the bearing:   00,0 










z

p  

3. Cavitation boundary condition is given by: 

2102

0 0,0, 

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The equations (14), (15), (16), (17) and (37) are first expressed in finite difference form and solved simultaneously using 

Gauss-Siedel method in a finite difference scheme.  

III.    METHOD OF SOLUTION 

To find out steady-state pressure all the equations (14), (15), (16), (17), (18) and (37) are expressed in finite difference 

form along with the boundary conditions. First for  2.00   the pressure distribution and flow parameters Q and 
zQ are 

evaluated from inertia less  0Re*  solution, i. e., solving classical Reynold‟s equation. These values are then used as 

initial value of flow parameters to solve Equations (16) and (17) simultaneously for Q and 
zQ Using Gauss-Siedel 

method in a finite difference scheme. Then update xI &
zI and calculate Q and 

zQ for use to solve Equation (37) with 

particular surface roughness pattern   and surface roughness parameter   for new pressure p distribution with 

inertia effect by using a successive over relaxation scheme. The latest values of Q , 
zQ and p  are used simultaneously 

with appropriate iteration scheme to solve the set of equations until all variables converges. The convergence criterion 

adopted for pressure is 5
__

101 
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
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






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


  oldnew

pp and also same criterion for Q and
zQ . For higher eccentricity ratios 

 2.00  the initial values for the variables are taken from the results corresponding to the previous eccentricity ratios. 

Very small increment in  is to be provided as 
*Re increases. The procedure converges up to a value of 5.1Re*  which 

should be good enough for the present study. Since the bearing is symmetrical about its central plane (

_

z =0), only one 

half of the bearing needs to be considered for the analysis.  

A. Fluid film forces: 

The non-dimensional fluid film forces along line of centers and perpendicular to the line of centers are given by  
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(38) 
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(39) 

where 1  and 2  are angular coordinates at which the fluid film commences and cavitates respectively.  
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B. Steady state load: 

The steady state non-dimensional load and attitude angle are given by  
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(41) 

Since the steady state film pressure distribution has been obtained at all the mesh points, integration of equations (38) and 

(39) can be easily performed numerically by using Simpson‟s 1/ 3 rd. rule to get rF


and 



F . The steady state load 0



W  

and the attitude angle  0  are calculated using equations (40) and (41).  

C. End Flow: 

End flow from the bearing consists of two parts: (a) from the clearance space (b) from the open ends of the bush, But flow 

from the open ends of the bush is usually very small compared with that from the clearance space, and hence only flow 

through clearance space is calculated .  

Flow from the clearance space is given by 
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z yddRwQ
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           (42) 

Substituting the value of w  from the relation (8) andequation (17) applying appropriate boundary conditions into 

equation (42) and performing integration with respect to y and non-dimensionalising, the equation will assume the form  
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 (43) 

where, 
cR

Q
Q

2



 

Non-dimensional end flow can thus be calculated first by finding numerically 

1

0








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


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









z
z

p and then numerical integration, 

once, the pressure distribution in the film region is known.  

The present steady state results (considering only fluid inertia effect) are compared to the results of Kakoty et. al., [7] and 

Chen & Chen [13] (for 0.1DL ) as given in Table 3. These three results are in good agreement.  

The theoretical study has been done considering only Inertia effects and also considering surface roughness effect 

separately before doing the same for combined effects. The results have been compared with available data of researchers.  

TABLE 3: COMPARISON OF STEADY-STATE CHARACTERISTICS OF OIL JOURNAL BEARINGS FOR 

0.1DL WITH FLUID INERTIA EFFECT ONLY 

Re* 
0  0

_

W  0

_

W  0

_

W  0  0  0  

  Present Kakoty Chen-Chen Present Kakoty Chen-Chen 

0 0. 2 0. 503 0. 5042 0. 501 77. 541 73. 71 73. 90 

 0. 5 1. 759 1. 7903 1. 779 58. 398 56. 64 56. 80 

 0. 8 7. 085 7. 4597 7. 146 36. 345 34. 66 36. 20 

 0. 9 16. 89 17. 713 16. 98 26. 175 23. 90 26. 40 

         

0. 28 0. 2 0. 504 0. 5055 0. 504 77. 927 73. 75 74. 20 

  0. 5 1. 794 1. 7980 1. 785 57. 725 56. 72 57. 00 

  0. 8 7. 194 7. 4837 7. 151 36. 310 34. 72 36. 30 
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  0. 9 17. 04 17. 761 16. 99 26. 240 23. 93 26. 40 

          

0. 56 0. 2 0. 505 0. 5070 0. 505 78. 311 73. 79 74. 50 

 0. 5 1. 829 1. 8058 1. 790 57. 114 56. 79 57. 20 

 0. 8 7. 301 7. 5081 7. 159 36. 291 34. 78 36. 40 

 0. 9 17. 19 17. 809 17. 00 26. 308 23. 97 26. 40 

        
1. 4 0. 2 0. 509 0. 5112 0. 508 79. 449 73. 95 75. 30 

  0. 5 1. 934 1. 8307 1. 587 55. 459 57. 05 58. 00 

  0. 8 7. 609 7. 5852 7. 1870 36. 2559 35. 02 36. 70 

  0. 9 17. 62 ------ 17. 03 26. 509 ---- 26. 60 

TABLE 4 . COMPARISON OF STEADY- STATE LOAD CAPACITY, ATTITUDE ANGLE, SIDE LEAKAGE WITH 

AVAILABLE RESULT OF HAMROCK AND B. C. MAJUMDAR[ 10 ] AND PINKUS AND STERNLICHT [ 4 ] FOR THE 

FOLLOWING BEARING PARAMETERS CONSIDERING SURFACE ROUGHNESS EFFECT ONLY [ 0.1DL , 

0.6 , ,5.01 rV 0.1 ] 

0  

_

0W  0  0Q  

(a) (b) (c) (a) (b) (c) (a) (b) (c) 

0. 2 0. 08 0. 08 0. 08 76. 8 73. 6 74. 0 0. 31 0. 31 0. 32 

0. 4 0. 19 0. 19 0. 20 63. 5 61. 6 62. 0 0. 61 0. 61 0. 61 

0. 5 0. 42 0. 45 0. 44 49. 5 48. 6 50. 0 0. 89 0. 93 0. 94 

0. 8 1. 42 1. 46 1. 18 33. 5 33. 3 36. 0 1. 09 1. 29 1. 24 

(a)-Present 

(b)-Hamrock and B. C. Majumdar[ 10 ] 

(c)-Pinkus and Sternlicht[ 4 ] 

TABLE 5. VARIATION OF STEADY-STATE LOAD AND SIDE LEAKAGE WITH VARIOUS LENGTH-TO-DAIMETER 

RATIOS CONSIDERING SURFACE ROUGHNESS EFFECT ONLY 5.0,2.0 10  rV  

DL      
_

0W  

(a) 

_

0W  

(b) )(

_

a

Q
 

)(

_

b

Q
 

 

 

 

 

 

 

1 

 

 

 

1/6 

1 0. 056 0. 054 0. 290 0. 320 

2 0. 074 0. 074 0. 324 0. 350 

3 0. 077 0. 075 0. 322 0. 330 

4 0. 076 0. 075 0. 317 0. 320 

 

 

1 

1 0. 118 0. 131 0. 260 0. 280 

2 0. 097 0. 105 0. 302 0. 300 

3 0. 086 0. 091 0. 308 0. 310 

4 0. 080 0. 084 0. 308 0. 310 

 

6 

1 0. 157 0. 157 0. 154 0. 090 

2 0. 115 0. 127 0. 262 0. 220 

3 0. 096 0. 105 0. 288 0. 270 

4 0. 086 0. 097 0. 297 0. 280 

 

 

 

1/6 

1 0. 014 0. 013 0. 146 0. 080 

2 0. 020 0. 020 0. 168 0. 090 
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0. 5 

3 0. 021 0. 022 0. 171 0. 090 

4 0. 022 0. 022 0. 170 0. 090 

 

1 

1 0. 075 0. 104 0. 142 0. 070 

2 0. 040 0. 050 0. 165 0. 090 

3 0. 031 0. 036 0. 168 0. 090 

4 0. 027 0. 030 0. 169 0. 090 

 

6 

1 0. 075 0. 104 0. 114 0. 040 

2 0. 040 0. 050 0. 157 0. 080 

3 0. 031 0. 036 0. 165 0. 080 

4 0. 027 0. 030 0. 167 0. 090 

 

 

 

 

 

 

2. 0 

 

1/6 

1 0. 215 0. 203 0. 565 1. 280 

2 0. 236 0. 209 0. 571 1. 080 

3 0. 223 0. 209 0. 541 1. 010 

4 0. 212 0. 196 0. 518 0. 940 

 

1 

1 0. 311 0. 309 0. 409 0. 690 

2 0. 255 0. 247 0. 473 0. 800 

3 0. 224 0. 215 0. 482 0. 820 

4 0. 209 0. 197 0. 481 0. 820 

 

6 

1 0. 235 0. 210 0. 171 0. 120 

2 0. 239 0. 211 0. 353 0. 490 

3 0. 220 0. 202 0. 416 0. 640 

4 0. 208 0. 192 0. 442 0. 710 

(a) . . . . . . . . . Present 

(b) . . . . . . . . . . Hamrock-B. C. Majumdar [ 10 ] 

A. Effect of modified Reynold’snumber (
*Re ) on load carrying capacity: 

The present steady state results with respect to load carrying capacity and attitude angle with fluid inertia effect  

only are compared to the results of Kakoty et. al., [7] and Chen & Chen [13] (for 0.1DL ) as given in Table 3.  

These three results are in good agreement. A slight decrease in load capacity with modified Reynolds number ( *Re ) is 

observed in the present study compare to others. In the present study it is observed attitude angle increases slightly for all 

eccentricity ratios compare to others.  

B. Comparison of Steady state Load Capacity, Attitude angle, Side Leakage: 

The present steady state results with respect to load carrying capacity and attitude angle with surface roughness effect 

arecompared to the result of Hamrock and B. C. Majumdar [10] and Pinkus and Sternlicht [ 4 ] for roughness effect only 

as shown in Table 4. These results are in good agreement.  

C. Effect of Steady-State load and side leakage with various Length-to-Daimeter ratios: 

The present steady state results with respect to load carrying capacity and side leakage with surface roughness effect are 

compared to the results of Hamrock and B. C. Majumdar[ 10 ] for roughness effect only as shown in Table 5. For 

0.1DL and various  and  the results are in good agreement with Hamrock and B. C. Majumdar [ 10 ] and for 

higher and lower value of DL the load carrying capacity values are quite matching with the value of Hamrock and B. 

C. Majumdar [10] but side leakage values are not matching.  
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IV.    RESULTS AND DISCUSSIONS 

A.  Effect of Modified Reynold’s Number (Re*) with eccentricity ratio considering inertia effect only: 
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Figure 3.Variation of steady-state load with ecentricity ratio for fluid film 

inertia effect and different modified Reynolds number

Re*=0

Re*=1.4

L/D=1.0

 

Figure 3 shows the load carrying capacity of journal bearings as a function of eccentricity ratio  0  with fluid film 

inertia effect when 0.1DL . A study of the figure reveals that as eccentricity ratio increases the dimensionless load 

increases when other parameters remain constant. It is also observed that the load parameter increases with the increase in 

modified Reynold‟s number which means fluid inertia increases load carrying capacity. For the higher eccentricity ratio 

7.00  the load parameters increases sharply. 

B. Effect of variance ratio with surface roughness parameter for surface roughness effect only:  
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Figure 4. Variation of steady-state load carrying capacity with roughness 

parameter for different variance ratio.

Vr1=0

Vr1=0.5

Vr1=1.0

L/D=1,=1,=0.6

 

Figure 4 shows steady state dimensionless load capacity of journal bearing as a function of surface roughness parameter 

 with different variance ratio. It is observed from the figure the load carrying capacity is increases when 0.3 and 

variance ratio 0.11 rV  and when 0.3 the variation is almost constant. For variance ratio ( 0.01 rV ) it decreases 

when 0.3 and thereafter when 0.3 the variation is almost constant. Load carrying capacity almost constant when 

0.3 for variance ratio ( 5.01 rV ) the curve lies in between other variance ratio. 
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C. Effect of Modified Reynold’s Number (Re*) with eccentricity ratio considering inertia and surface roughness effect: 
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Figure 5.Variation of side leakage with ecentricity ratio for fluid film inertia 

and surface roughness effect.
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Figure 5 shows steady state side leakage of journal bearing as a function of eccentricity ratio  0 with both fluid inertia 

and surface roughness effect for 0.1DL with modified Reynolds number as a parameter. It is observed from the figure 

the dimensionless side leakage increases with eccentricity ratio  0 . The side leakage is slightly decreases when both 

effects has been considered. But the effect of fluid film inertia is insignificant.  

D. Effect of Modified Reynold’s Number (Re*) with eccentricity ratio considering inertia and surface roughness 

effect: 
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Figure 6.Variation of steady-state load with ecentricity ratio for fluid film 
inertia and surface roughness effect.

Re*=0

Re*=1.4

L/D=166,Vr1=0

 

Figure 6 shows steady state load carrying capacity of journal bearing as a function of eccentricity ratio  0 with fluid 

film inertia and surface roughness effect for 0.1DL with modified Reynolds number as a parameter. It is observed from 

the figure that the dimensionless load increases with increase in eccentricity ratio  0 and fluid inertia improves the load 

carrying capacity.  
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E. Effect of eccentricity ratio with attitude angle considering inertia and surface roughness effect: 
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Figure 7.Variation of attitude angle with ecentricity ratio for 
fluid inertia and surface roughness effect
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Figure 7 shows the variation of attitude angle with eccentricity ratio for different modified Reynolds number when 

combine fluid inertia and surface roughness effect are considered. . It is observed attitude angle decreases as eccentricity 

ratio increases almost linearly. The variation is insignificant with respect to modified Reynolds number.  

F. Effect of smooth surfaces, surface roughness, fluid inertia and combined inertia and roughness on eccentricity 

ratio: 
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Figure 8.Variation of steady-state load with ecentricity ratio under 
different operating parameter.
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Figure 8 shows steady state load carrying capacity of journal bearing as a function eccentricity ratio  0  considering 

four different condition as with the effect of fluid film inertia, smooth surface, rough surface and combined effect of fluid 

film inertia and rough surface for 0.1DL . It is observed from the figure that steady state load capacity is maximum 

when fluid film inertia effect only considered and minimum when we consider rough surface effect only. Also we 

observed at  5.00  the load carrying capacity is increased marginally for combine effect in comparison to smooth 

surface.  
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G. Effect of Roughness Parameter over Roughness Pattern and Inertia effect: 
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Figure 9.Variation of Steady-state load with roughness parameter for fluid film inertia and 

surface roughness parameter for different surface pattern parameter

6



6

L/D=1,Re*=1.4,Vr1=00=0.5

 

Figure 9. shows variation of steady state load with roughness parameter considering combined effect of fluid film inertia 

and surface roughness for different surface pattern parameter. It is observed that steady state load is maximum for 

roughness pattern parameter ( 0.1 ) and minimum for ( 61 ) for roughness parameter ( 0.3 ) and for roughness 

pattern parameter ( 0.3 ) it observed the variation is almost constant.  

H. Effect of Roughness Parameter over Roughness Pattern and Inertia effect: 
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Figure 10.Variation of steady-state load carrying capacity with surface 

roughness parameter for fluid film inertia and surface roughness effect.
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Figure. 10 shows steady state dimensionless load capacity of journal bearing with fluid film inertia and surface roughness 

effect as a function of roughness parameter  for different variance ratio and modified Reynolds number (
*Re ) 

combination and for 0.1DL  . It is observed from the figure dimensionless load capacity is maximum for 

0.0Re*,0.11 rV and minimum for 0.0Re*,0.01 rV .  
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V.   CONCLUSIONS 

1. It is important to note that the load carrying capacity increases with increase in modified Reynold‟s number and 

eccentricity ratio.  

2. When the roughness parameter 0.6 the results obtained from the present method of solution considering combine 

effect are reasonably in similar nature compared with surface roughness effect only and nature of curve are similar 

with available solution.  

3. The steady-state load carrying capacity increases when surface roughness parameter ( 0.3 ) and journal surface is 

rough (i. e 0.11 rV ).  

4. The steady-state load carrying capacity increases marginally when surface roughness parameter ( 0.3 ) and both 

the journal and bearing are of same roughness structure (i. e 5.01 rV ).  

5. The steady-state load carrying capacity decreases when surface roughness parameter ( 0.3 ) and journal surface is 

smooth (i. e 0.01 rV ).  

6. It is observed that when both surfaces have the same roughness structure then with isotropic oriented surface pattern 

0.1 gives maximum steady state load carrying capacity and transversely oriented surface pattern 61 gives 

the minimum steady state load carrying capacity for eccentricity ratio  2.00  .  

7. Side leakage increases with increase in eccentricity ratio for inertia and surface roughness effect.  

8. Attitude angle decreases linearly with eccentricity ratio for inertia and surface roughness effect.  

VI.   NOMENCLATURE 

c  Radial clearance (m) 

D  Diameter of Journal (m) 

e  eccentricity (m) 

00
, FFr Steady state hydrodynamic film forces (N).   

__

00
, FFr  Dimensionless steady state hydrodynamic film 

forces  

0h  Steady state nominal Film thickness, (m) 

0

_

h  Dimensionless Steady state nominal Film 

thickness  

L  Length of the bearing in m 

p  Film pressure in Pa 

_

p  dimensionless film pressure 








2

2

R

cp



 

R  radius of journal in m 

eR  Reynolds number, 


cR  

eR
 Modified Reynolds number, 

eR
R

c







  

wvu, Velocity components in x, y, z directions inm/s 

___

,, wvu  Dimensionless velocity components  

0W  Steady-state load bearing capacity in N 

_

0W  Dimensionless steady-state load 
LR

cW
3

2

0



 

zyx,  Coordinates 

__

,, ZY   
Dimensionless coordinates, 

2

,,
L

z

c

y

R

x  

0  Steady-state eccentricity ratio 

  Density of the lubricant (kg m
-3

) 

  Angular velocity of journal(rad s
-1

) 

p  Angular velocity of whirl (rad s
-1

) 

0  Absolute viscosity of lubricating Film at inlet 

condition 

 (N s m
-1

) 

  Attitude angle 

Q  Dimensionless flow parameter in  direction 

zQ  Dimensionless flow parameter in 

_

z direction 

_

Q  Dimensionless side leakage  

21 ,  Angular coordinates at which film commences 

and cavitates.  

  Surface pattern parameter 

  Roughness Parameter, 


c  
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H  h  

x , 
z  Pressure flow factors 

s  Shear flow factor 

  Composite r. m. s roughness, 

2

2

2

1    

1Vr  Variance ratio,  
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